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interaction of coaxial vortex
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Introduction
For more than 100 years the problem of the interaction of vortex structures has
been the subject of a large number of investigations. The area of application of
the results obtained by the solution of this problem has changed from the
creation of the vortex atom model[1] and forming of the vortex sheets[2] to the
description of mixing processes, modern methods of weather forecasting and
the theory of turbulence. Although some applications later proved intractable
(for example the vortex atom model), the results from such attempts had the
classical character as a rule and were employed in other domains of science. The
possibility of visualization of the vortex phenomena led to corrections to the
theoretic models at each stage of their development. The development of
computer capabilities enabled a study of a variety of non-integrable cases of
vortex interactions. They closely connect with the conception of order and
chaos in the theory of dynamical systems. In vortex dynamics, a sensitivity to
chaos leads to critical analysis of the possibilities of vortex methods being used
for the description of different natural phenomena.

In this paper, the problem of interaction of the very simple vortex structures,
namely the coaxial vortex rings, is analysed. The investigation of such non-
linear interactions is restricted by the equations used and the accuracy of
corresponding experiments. As the first step in the investigation of the
interaction of several coaxial vortex rings, the inviscid Euler equations can be
used. Their solution can exhibit chaotic behaviour. Moreover, their non-
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dissipative nature allows the use of many results obtained for Hamiltonian
systems.

The process of interaction of two vortex rings had already been qualitatively
described by Helmholtz[3]. Different situations of these interactions were
examined in detail in the works of Dyson[4] and Hicks[5] at the end of the last
and at the beginning of this century. At the same time, the first experimental
results of Rogers[6], Oberbeck[7] and others were published.

A current great interest in vortex dynamics is again apparent. Different
aspects of interaction of coaxial vortex rings were experimentally examined in
the papers of Oshima et al.[8], Maxworthy[9], Yamada and Matsui[10],
Auerbach[11] and Claus[12]. Theoretical and numerical investigations have
been published in papers by Moore and Saffman[13,14], Widnall[15],
Möhring[16], Kambe and Minota[17], Kambe[18], Müller and Obermeier[19],
Shariff and Leonard[20], and also in the monographs of Saffman[21] and
Meleshko and Konstantinov[22] and in the report of Shariff et al.[23].

Formulation of the problem
Cylindrical co-ordinates (r, ϑ , z) with radial distance r, azimuthal angle ϑ and
axial distance z are introduced. Axisymmetry requires that ∂/∂ϑ = 0. The fluid
is assumed to be incompressible, and there exists a stream function ψ such that

In such a case, the vorticity has only one component ωϑ = ω. For axisymmetric
flow without swirl the equation for the azimuthal vorticity is

In terms of the stream function, the azimuthal vorticity is

(1)

Each ring has initial co-ordinates Ri
(0), Zi

(0), radius of circular core ai
(0) << Ri

(0)

and some constant circulation κ i = ∫∫ωdrdz. It is necessary to determine the
position of each ring at any moment of time.

The stream function ψ for the point Q(Ri – ai cos α, ϑ , Zi + ai sin α), which is
taken on the surface of the ring i, can be written according to the Biot-Savart
law[21,24]:
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(2)

Here K(k) and E(k) denote the complete elliptic integrals of the first and second
kind of modulus k.

It is assumed that the core radius ai(t) is variable. However, the core shape of
the rings remains circular. With such an assumption, the equations of motion of
N vortex rings can be written in the so-called Dyson’s model form[4]:

(3)

where

and the prime indicates that summation is over all i ≠ j. The problem was made
dimensionless by referring all the variables to a length scale [L] = R0, and time
scale [T] = 2πR0

2/κ0, characteristic of the physical problem.
This system of equations assumes that no deformation of core shapes occurs.

A deformation of the core shape of isolated ring was investigated in the papers
of Fraenkel[25] and Norbury[26]. An examination of the coaxial interaction of
inviscid core deformation was made by Shariff et al.[23]. The relatively simple
Dyson’s model which can be considered as correct when ai << Ri is investigated
here. A comparison with the experiments of leapfrog motion[10] with Dyson’s
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model was made in the paper by Gurzhi et al.[27]. Deviations from the simpler
model occurred only for later stages of the motion.

The system of equations (3) has two first integrals:

(4)

Equation (3) is an example of a Hamiltonian system with canonical variables
pi = κiRi

2 and qi = Zi

(5)

with the independent Hamiltonian H

In addition to H the system (5) has another first integral ∑ N
i=1 pi = constant.

Therefore, this system is integrable for N = 2 according to Liouville’s theorem.
It is non-integrable for N ≥ 3, because it has no additional first integrals.

The system of coaxial vortex rings has the centre of vorticity with co-
ordinates

(6)

The value Rc(t) = Rc (0) = const for arbitrary initial conditions in the problem
examined.

Interaction of two vortex rings
The problem of the interaction of two coaxial vortex rings had been
investigated extensively. The motion of two vortex rings can be used as the test
for different numerical models. If two vortex rings have the same sense of
rotation, they travel in the same direction and ,under certain conditions, the rear
vortex will attempt to pass through the front one.

When the vortex rings have the opposite sense of rotation, the so-called head-
on collision takes place.
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In the paper by Gurzhi et al.[27], the analysis of possibility of the
leapfrogging of two rings had been made by using invariants (4). Such an
approach permits us to obtain the exact analytic solution for the problem under
consideration.

The motion of two coaxial vortex rings can be defined with the help of only
three independent determined parameters χ = κ1/κ2, ρ0 = Ri

(0)/R0 and Z0 = 
(Z1

(0) – Z2
(0))/R0. As R0 the initial radius of ring R2

(0) was chosen. The conditions,
when the leapfrogging of two rings takes place, can be determined by the
Dyson’s theorem[4]. In accordance with this theorem, the leapfrogging always
takes place if the rings at the initial time have equal velocities and the distance
between them is infinity. If Z0 was given, the ρ0 corresponding to leapfrogging
is found from the conditions:

(7)

In the last expression, the inequality means that the initial kinetic energy of the
system cannot be less than the kinetic energy of two isolated rings because 
C(k0) > 0. It is easy to show that independently of the value of Z0 the relations
(7) are satisfied when 

The domains of values Z0 and ρ0 for ai
(0)/Ri

(0) = 0.01, where the leapfrogging
takes place, are shaded in Figure 1(a)[27]. Here the domains for χ = 0.5, 1.0, and
2.0 are marked by 1-3 respectively.

The case when χ < 0 (so-called head-on collision) was studied in the paper of
Gurzhi and Konstantinov[28]. It was shown that in the dependence of
combinations of ρ0, χ and Z0 there are three cases of head-on collisions: direct
scattering, limiting case of two symmetric rings and mutual trapping. All these
cases are shown in Figure 1(b). The co-ordinates are the parameters –χ and ρ1

*.
The parameter ρ1

* denotes the maximum value of the dimensionless radius of
the first ring R1 at the moment of collision (when Z1 – Z2 = 0). To each curve
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there corresponds a specific value of the initial ratio ρ0 (In Figure 1(b) the
numbers 1-7 denote the curves for ρ0 = 1.4, 1.2, 1.0, 0.8, 0.6, 0.4 and 0.2). The
initial distance Z0 = 50 was chosen.

The case of direct scattering means that the both rings keep their initial
identity after collision. In Figure 1(b), the solid parts of curves 1, 2 and 4-7

Figure 1.
Leapfrogging

conditions (a) and
classification of head-on

collisions (b) by the
interaction of two

vortex rings
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correspond to this case. The intervals of the curves ρ0
* = ƒ(χ) to the left of the

dashed parts of lines correspond to the collisions when the ring R2 passes
through the ring R1. The intervals to the right of the dashed parts of lines
correspond to the collision when the ring R1 passes through the ring R2.

Limiting cases of symmetrical rings by χ = – 1 is well known and has been
already described by Helmholtz[3]. As the rings approach each other, their radii
increase without bound, and the distance decreases between them continuously.
The rings never pass through each other.

The case of mutual trapping is of great interest and has been described in
[28]. In this case, both rings move in the same direction in spite of the fact that
they have opposite senses of rotation. The initial data corresponding to this
case can be defined at the dashed parts of curves in Figure 1(b). To determine
the initial conditions for such a case of motion is difficult. It is suitable to use 
Z0 = 0 for that case. Such curious phenomena have been found by analytically
solving system (4). In the case of two rings, this system allows us to observe the
behaviour of radii Ri in depending on the distance between the rings Z12 = Z1 –
Z2. It was found that two combinations of the initial meanings of ρ0 and Z0 for
equal χ can make the same pairs of the first integrals P and T. In such
situations, the motion cannot be determined definitely by first integrals. The
first combination Z12 changes in limits –Z12

* < Z12 < Z12
* , and the other one in

limits – ∞ < Z12 < + ∞. The initial data of the first combination correspond to
the dashed parts of curves ρ1

* = ƒ(χ) and determine mutual trapping of vortex
rings. Data of the second combination correspond to direct scattering.

The examples for all possible situations of interaction of two vortex rings are
presented in Figure 2.

Figure 2.
All possible situations
of interaction of two
vortex rings
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Numerical investigation of interaction of N vortex rings
System (3), with the associated initial conditions, was integrated numerically
for different N values by the method of extrapolation with variable step and
order[29]. The accuracy of the computed trajectories has been thoroughly
investigated by integrating the system of equations with various initial step
sizes and local error values. The initial step ∆t = 0.0005 with maximum step
∆tmax = 0.001  and a local error ∆R = 10–13 were sufficiently demeaned to ensure
proper accuracy. Double precision computations were found necessary.

For the case N ≥ 3, the number of independent determinative parameters
increases considerably. For example, when N = 3 for the determination of all
possible situations it would be necessary to use at least six independent
parameters (if the parameters of all rings are divided by the parameters of one
ring). At the same time, the system of the rings becomes very sensitive to
changes in the initial conditions. In Figure 3(a), the simplest example of such
sensitiveness is shown. Here the trajectories of motion for the simplest case of
initial conditions R1

(0) = R2
(0) = R3

(0) = 1, Z1
(0) = 0, Z2

(0) = 1, Z3
(0) = 2 for equal κ are

shown. The situation when rings 1 and 2 have identical initial co-ordinates, and
ring 3 has initial co-ordinate Z3

(0) = 2.02 is presented in Figure 3(b). As one can
see, it is impossible to predict the process of the interaction even with such a
little change of one of the co-ordinates. Only the trajectories of the first rings for
both cases are shown in Figure 3(c). The trajectory corresponding to the case of
Figure 3(a) by the solid line, and the trajectory corresponding to the case Figure
3(b) by the dashed one are marked.

The restricted class of the initial conditions of the vortex rings has been
investigated in detail in[30]. The initial set of vortex rings has been determined
by the formulae

(8)

At the initial moment, central lines of ring cores were uniformly distributed on
the surface of the ring with radius R0 = 1 and radius ρ0 of cross-section (Figure
4). The value of ρ0 was the control parameter of the problem.

A variety of tools were applied to characterize the dynamics behaviour of the
vortex trajectories. These include spectra, Poincaré sections and relative phase
trajectories.

The behaviour of the spectral function was calculated for the co-ordinates
Ri(t) of each vortex ring. When the system of vortex rings in the process of
interaction decayed into several subsystems, the spectral function was
calculated for the velocity of the centre of vorticity VZc(t). The spectrum was
estimated by an FFT algorithm. The effective sampling period t was equal to
0.0016. To obtain a good spectral resolution, the FFT length was chosen to be
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Figure 3.
Example of interaction
of three vortex rings:
(a)Ri

(0) = 1, Z1
(0) = 0,

Z2
(0) = 1, Z3

(0) = 2, 
κ i =1; (b) Ri

(0) = 1, Z1
(0)

= 0, Z2
(0) = 1, Z3

(0) =
2.02, κ i =1; (c) difference
between trajectories R1
= f1 (Z) from case (a)
(solid line) and R1 =
f2(Z) from case (b)
(dashed line)
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8,192 points for calculating the co-ordinates Ri(t) and 16,384 points for
calculating the velocity of the centre of vorticity VZc(t).

For the cases under consideration, the system of rings moves in the same
direction and its centre is at infinity. For generation of phase co-ordinates, the
method of delays was chosen[31]. This method leads to the modified 1D
Poincaré map by stroboscoping either the vortex position or the velocity of the
vorticity centre at the intersection of the phase trajectory with a chosen surface.
In this technique Poincaré sections were defined with the help of the following
set of co-ordinates

(9)

The value of ∆t was chosen equal to the period of the first mode of oscillations
of the vortex ring. As a control surface the cylindrical surface R = 1  was
chosen. If Poincaré sections were determined according to VZc(t), the control
surface was determined as the mean velocity of the vorticity centre. A sketch of
the generating stroboscopic Poincaré sections is shown in Figure 5.

Relative phase trajectories have been determined in the space (ZiC, Ri), where
ZiC = Zi – Zc.

Figure 4.
Initial conditions of
vortex rings for the

cases (a) N = 3, (b) N =
4 and (c) N = 5
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The numerical calculations of the interaction of three rings (ai
(0)/Ri

(0) = 0.01)
allow us to obtain some interesting results. There are three regions of value ρ0
with regular motion, and each of them has different properties. In the centre of
one region by ρ0 = 0.23, the periodic motion of rings occurs (See Poincaré
sections in Figure 6). Here all the sections (≈ 2,000 sections were calculated) are
strictly situated on 13 points in the (R2

′, R2
″) space. As shown in Figure 7, a

perfect picture for ρ0 = 0.23 takes place also for the relative phase trajectories.
Between the regions with regular motion there is always one with chaotic
characteristics. Beginning from the value ρ0 ≥ 0.35 the initial system, which
consists of three vortex rings, decays after some interactions into two
subsystems with a leapfrogging ring pair and one isolated ring (3 → 2 + 1). In
this region of ρ0, the periodic motion appears from the initial chaotic one. The
examples of behaviour of spectra are presented in Figure 8. The investigation of
the trajectories with another value of ai

(0)/Ri
(0) = 0.008 shows that the main rules

of the distribution of regions with order and chaos are kept. The difference
between this case and the one described above consists in the small
displacement of borders for each region of ρ0.

For initial systems which consist of four and five rings, the regular motion
takes place only in cases when the initial set of rings disintegrates into two or
three subsystems. These initial sets are more sensitive to chaotic interactions. In
general, a regular situation when all four or five rings move together was not
found. In the case N = 4, the regular motion occurs when the initial set of rings
decays into two independent subsystems with either three and one rings (4 → 3
+ 1), or two and two rings (4 →2 + 2). In the case N = 5, the regular motion
occurs accordingly to situations 5 → 2 + 2 + 1 and 5 → 3 + 2. Moreover, in both

Figure 5.
Sketch for determining
the Poincaré sections by
the method of delay
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these cases there are the regions of values ρ0, when the final set of rings moves
chaotically by 4 → 3 + 1, or 5 → 3 + 2. In these situations one subsystem, which
consists of three vortex rings, moves chaotic and another one – periodic. The
detailed classification of types of the motion by initial conditions (8) for 3, 4 and
5 vortex rings has been made in[30].

Figure 6.
Poincaré sections for

three vortex rings
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Mixing of passive fluid particles during vortex rings interaction
In different natural vortex phenomena or in experiments as a rule we observe
the motion of passive fluid particles in the vorticity field. Only after special
analysis can we determine the concrete parameters of vortices, namely their
radii, values of the cross-sections and circulations. The problem of mixing of
passive particles has a number of promising attractive applications.

The behaviour of scalars in the vector velocity field has been examined
for many years.  Common questions relat ing to this  problem are

Figure 7.
Relative phase
trajectories for three
vortex rings
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presented in the works of Aref[32] and Ottino[33,34].  Some special
cases of mixing in the field of vorticity were examined by Wiggins[35],
Rom-Kedar et al.[36], Aref[37] and Zawadzki and Aref[38]. The passive
particles can be considered as vortices with zero circulation. Such a
method was applied to the 2D problem of behaviour of passive particles
by interaction of point vortices in a paper by Meleshko et al.[39]. For
the present case of coaxial vortex rings, it is suitable to present the
passive particles as rings of zero circulation, which have a common
axis with dynamic rings. The additional equations for  passive particles
with co-ordinates (Z,R) are:

(10)

where

Figure 8.
Power spectra for three

vortex rings
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with initial conditions t = 0: R = R(0), Z = Z(0). These equations must be solved
together with system (3). As one can see, each passive particle moves in the
velocity field generated by N vortex rings. These particles do not influence the
rings. Additionally, the passive particles do not interact with one another.

As is well known, the problem of interaction of two vortex rings is
integrable. The problem of mixing of passive particles in a field of vortex rings
is integrable only by the motion of one vortex ring. In all other cases, the
situation becomes non-integrable and must be analysed numerically. In this
section, some examples of passive particles motion are given for the
investigated cases of the interaction of two and three vortex rings. The fluid
flow induced by a thin vortex ring is shown by fixed vortex co-ordinates in
Figure 9. The closed streamlines create the so-called atmosphere of vortex
rings. By the interaction of some rings the motion of the rings is not stable, and
the rings also do not have their own isolated atmosphere. However, it is
interesting to examine the process of mixing, when passive particles fill in the
atmosphere of the isolated ring at the initial moment of time. Such a situation
resembles the experiments by the generation of vortex rings when a tinted
liquid is used. At the initial moment of time, up to 4,000 particles were
distributed on the different closed streamlines. During the mixing process a
situation occurs in which it becomes impossible to follow the topology of each
streamline because of the large distance between two initially neighbouring
points. In such cases, up to an additional 4,000 particles were distributed
between those two initial points. The distance between these particles can be
∆Z = 0.0001. These situations show the difficulties of the experiments, when
associated with a loss of initial atmosphere or dilution. Both viscosity and
dilution of the atmosphere are important reasons preventing the observation of
the leapfrog motion during experimentation. Only in very precise experiments
(for example [10] and [12]) has this phenomenon been perfectly observed.

The case of leapfrog motion is shown in Figure 10. The rings have the same
radii and circulations R1

(0) = R2
(0), κ1 = κ2, the same ratios ai

(0)/Ri
(0) = 0.01, and

they are in distance Z12 = 1 at the initial moment of time. The particles are
marked into two colours for clarity in determining the atmosphere of the ring to
which they belonged at the initial moment of time. The process of mixing is
rather difficult. It is especially difficult to identify the particles in the
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Figure 10.
Mixing passive

particles by leapfrog
motion of two vortex
rings. Horizontal and

vertical co-ordinates are
axial (Z) and radial (R)

positions of the
particles respectively
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Figure 11.
Mixing passive
particles by regular
interaction of three
vortex rings. Horizontal
and vertical co-
ordinates are axial (Z)
and radial (R) posiitons
of the particles
respectively
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Figure 12.
Mixing passive

particles by chaotic
interaction of three

vortex rings. Horizontal
and vertical co-

ordinates are axial (Z)
and radial (R) positions

of the particles
respectively
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experiments during mixing. However, there have been some successes in
observing the leapfrog motion.

The behaviour of particles will be further complicated by the interaction of
N > 2 rings. Two cases of motion of three vortex rings have been chosen. The
first case corresponds to perfect order (ρ0 = 0.23), and the other one to the chaos
(ρ0 = 0.3). The main question of this investigation was to distinguish a chaotic
motion and regular one visually only, without additional physical analysis. The
qualitative reflection of this process at the initial domain of interaction is shown
in Figures 11 and 12. The case of mixing of particles by the interaction of three
rings for ρ0 = 0.23 is shown in Figure 11. It is possible to observe regular
structures, especially in the wake. The case of chaos (ρ0 = 0.3) in Figure 12 is
shown. The difference in the behaviour of particles in these cases is quite clear.

Final remarks
In the dependence of a number of coaxial vortex rings and their motion can be
described either by an integrable or non-integrable system of equations. In the
non-integrable case, the system becomes very sensitive to chaos. Therefore, a
high accuracy of numerical calculations is required. In spite of non-integrability,
there are the quasi-periodic cases of three and more vortex rings. More stable
configurations occur for three vortex rings. The cases when four or five vortex
rings move quasi-periodically together were not found. The regular motion for
such initial sets occurs only when they decay to several subsystems. The
numerical visualization of flow by passive particles shows the opportunity to
identify, qualitatively, the types of interaction. The question of the possibility of
the existence of chaotic mixing domains of passive particles by quasi-periodic
interaction of vortex structures is open and requires additional investigation.
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